

Parsing schneller
Fast parsing

Michał J. Gajda

●Principles
●Tips and tricks

●Benchmarks
●References

Application types

● Compilers
● Code analyzers
● Text analyzers
● Mark-up processors (browsers, DocBook formatters)
● Low-level networking
● Data input/output.

Estimated 60-90% of code are parsers!

Theoretical concepts

● Lexer - lexical analysis
● Lookahead
● LL(n) – left-linear language class with n-character

lookahead
● LR(n) – left-reducible language class with

n-character lookahead
● Ambiguous grammars
● Generalized parsers (Earley's style)

Zu vorstellen...

Practical concepts

● Zero-copy, mmap
● Instructions per byte
● Lookups/decisions per byte
● Loop check/loop unrolling
● Abstract syntax tree
● Cache and sequential lookahead

hPDB – Protein DataBank parser

hPDB reference
hPDB - Haskell library for processing atomic biomolecular structures in Protein Data Bank format

BMC Research Notes 2013, 6:483 DOI:10.1186/1756-0500-6-483

http://www.biomedcentral.com/1756-0500/6/483/abstract

HPDB – tricks

● No standard tools (bison, yacc, alex, happy, parsec)
● mmap, -fsse

● strict ByteStrings (copy-free), not [Char]
● Column-based, line-oriented format.
● 60-80% spent in floating point conversion

(with C library also used by Google Chrome)
● 2 checks for most characters:

– newline?
– consistent with record type?

PugiXML –
Parsing XML at speed of light

● mmap
● Avoid copying identifiers.
● Non-well-formed documents may sometimes be parsed.
● Normalizations and transformations are performed on-the-fly (entities, char. refs,

newlines, attr. normaliz.).
● Char stream instead of token stream
● In-place strings, single-gap strings
● 256-byte tables + comparisons for ranges (UTF16, UTF32)
● Vectorized checks (SIMD up to 16-chars)
● Loop instead of recursion, with DOM node cursor stack
● Cold code shifting
● Null-terminated chunks
● Linked-list representation of DOM

GNU vs BSD grep

● mmap
● Avoid looking at all chars.
● For those that are looked up – 2-3 i86

instructions.
● Own unbuffered output to avoid copying.
● Avoid in-kernel copying from realignment:

page-aligned buffers, page-sized read chunks

Common motives

● Buffering (mmap)
● Zero-copy operations
● Number of decisions per character.
● Number of instructions per character (and

vectorization).

